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Synthetic Flows for Engineered Systems with Nonstationary Parameters: 

Study of Maui’s Wailoa Ditch 

Emily A. Grubert1 and Michael E. Webber, Ph.D.2 

ABSTRACT: Water flow through engineered channels is important for decision making given its 

close ties to availability for allocation. However, planners often rely on estimates for natural 

streamflow, then use stream-by-stream assumptions and aggregation to estimate allocatable 

flows rather than directly assessing flows through engineered channels. Further, synthetic flows 

based on historical records can be unreliable when parameter nonstationarity due to effects like 

climate change is likely. This case study of the Wailoa Ditch, a major engineered surface water 

supply system on Maui, Hawaii, uses a natural experiment based on Maui’s declining rainfall to 

demonstrate and validate that both problems can be addressed. For Wailoa, synthetic and actual 

flow characteristics differ by less than 5% when historical records are adjusted to reflect 

changing rainfall. Direct simulation of Wailoa’s flows reproduces modern conditions more 

accurately than stream-by-stream approximations. Precipitation-based scenario analysis suggests 

that under the influence of both decadal oscillations and climate change, Maui is far more likely 

to experience water supply shortages on its main engineered system in the future than in the past.  

(KEY TERMS: climate change, scenario analysis, drought, rainfall-runoff, water resource 

planning, synthetic streamflow, irrigation systems, ditch flow) 
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Global water stress is increasing (Vörösmarty et al 2010), putting pressure on water 

managers to be more sophisticated in planning not only for historically observed variability of 

supply but also for less predictable variability related to issues like climate change (UNDP 

2014), groundwater depletion, and long-cycle shifts that might not be reflected in human records. 

Planners seek to address a fundamental question of how future conditions will affect the amount 

of water available for allocation among uses like agriculture, drinking water, and environmental 

flow restoration. Often, addressing this question relies on a second question: how much will it 

rain? While rainfall is a relatively easy parameter to measure and record, understanding rainfall 

scenarios alone is often insufficient. Planners also need to understand how rainfall ultimately 

contributes to the amount of water that enters human-managed systems from surface and 

groundwater sources in order to answer questions like whether more storage should be built in a 

given area, whether a permit for water abstraction should be issued, or whether a treatment 

facility is prepared for high and low flow events. Often, the ultimate flows of interest are those in 

engineered channels like pipes, canals, and irrigation channels, not those in natural channels like 

streams and rivers. However, most modeling attention is devoted to relating rainfall to natural 

channel flows—a crucial relationship for ecosystem management and other tasks—that planners 

must then evaluate for their contributions to the allocatable resource.  

This multi-step process relating rainfall to first natural, then human-managed engineered 

flows requires assumptions about capture, flow relationships, and others that increase the 

complexity of modeling potential effects of major external forcers like climate change. 

Developing models that directly relate rainfall to flows in engineered channels enables scenario 

planning and direct investigation of water availability for human use from engineered systems. 

This research asks whether such model development might proceed by adapting rainfall-runoff 
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models developed for natural channels to modeling flows through engineered systems, 

particularly when climate parameters are expected to be nonstationary. In particular, this case 

study uses a well defined case study with a natural experiment useful for validation to investigate 

the Wailoa Ditch, a major engineered supply channel on Maui Island, Hawaii.  

Maui’s Wailoa Ditch as Case Study. Maui is a bellwether for the types of planning 

challenges that many other global regions are likely to face. Maui is already experiencing 

possible economic water scarcity (see e.g. County of Maui 2012; Freedman 2007) due to both 

supply (Bassiouni and Oki 2013) and demand changes, including a substantial decline in 

precipitation (Chu and Chen 2005; Diaz and Giambelluca 2012; Elison Timm et al 2011; Elison 

Timm et al 2015; Timm and Diaz 2009; Zhang et al 2016), and it faces complex water demand 

profiles that are not easily resolved in a scarcity context (Grubert 2011). Maui is small enough to 

model fairly completely but large enough to host the kinds of climatic and use case diversity 

usually seen on national scales, particularly because of the extreme climatic differences between 

its sea level plains and high mountain regions (Giambelluca et al 1986). As an island, Maui has 

easily defined boundaries, and its long history of water management and allocation means it has 

long-term historical flow records for both natural and engineered systems. Crucially, these flow 

records span a period with a major decline in rainfall similar in magnitude to the kind of 

structural shift that might be seen with climate change, which allows for model validation via a 

natural experiment that tests whether models based on pre-shift data can accurately replicate 

observed post-shift conditions.  

On Maui, most surface water available for human use is delivered through engineered 

channels called ditches that do not behave like natural streams. Maui’s ditches ring the island, 

running perpendicular to and diverting the island’s many mountain streams at multiple elevations 
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(Fig. 1). While Maui’s water is abundant, it is not well co-located with demand, so users either 

rely on highly energy intensive (and thus expensive) sources or on high quality, low energy 

intensity surface water that is delivered by gravity through the ditch systems (Grubert 2015). The 

largest of these systems is the Wailoa Ditch, which forms the backbone of the East Maui 

Irrigation System (EMI) with a capacity of 195 million gallons per day (mgd; 8.5 m3/s) (Wilcox 

1996). Wailoa has a capacity larger than any river or stream in the State of Hawaii (Wilcox 

1996), and EMI is the largest privately built and operated water system in the United States 

(HC&S 2014). For context, the California State Water Project—the largest built water 

conveyance system in the United States—is less than 20 times the size of EMI, despite serving 

about 250 times as many people and 23 times as much agricultural land (California Department 

of Water Resources 2011).  

Wailoa and other ditches play important roles in Maui’s human-influenced hydrology, in 

particular by artificially connecting streams. Most of the island’s streams run mauka to makai 

(mountain to ocean), with few tributaries and rare interconnections among streams (Fig. 1). The 

ditches thus serve to connect and comingle waters that would not otherwise meet and would not 

otherwise reach the flat, sunny Central Plain region between Maui’s two major volcanoes where 

agriculture and urban settlements exist. Wailoa is important enough to Maui’s human water 

supply that daily mean flows measured and published by the USGS are available for dates 

between 1922 and 1987, an exceptionally long record that enables Wailoa’s use as a validation 

case for modeling an engineered system (U.S. Geological Survey, National Water Information 

System. Accessed May 2010 – August 2011, http://waterdata.usgs.gov/nwis: unless otherwise 

noted, all historical streamflow data are from this source).  
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Modeling for Water Management. Modeling potential future conditions using 

empirical historical data is a common approach to managing the inherent uncertainty of water 

supply (for example, see Fiering and Jackson 1971; Govindaraju and Rao 2010; Hirsch 1979; 

Srikanthan and McMahon 2001; Stedinger and Taylor 1982a and 1982b; and You et al 2014). 

Two major types of models used to model flows are rainfall-runoff models and synthetic flow 

models, both of which are almost always applied to natural systems like rivers and streams rather 

than engineered systems like canals and pipes. Rainfall-runoff models link rainfall to flow by 

explicitly accounting for specific, modeled mechanisms, such as basin shape, land cover, or 

elevation, while synthetic flow models use the statistical characteristics of the population of 

historical flow records to draw repeated samples that can be used for probabilistic analysis. That 

is, while rainfall-runoff models isolate specific mechanisms to estimate flow at the cost of 

possibly excluding an important determinant, synthetic flow models incorporate all mechanisms 

present in the historic record at the cost of not being able to isolate the effect of a particular 

mechanism. One reason this inability to isolate mechanisms is important is that synthetic 

streamflow models specifically do not account for the possibility that the underlying statistical 

structures present in the historic record do not accurately reflect actual conditions, which means 

that issues like short historical records, changes in climate or watershed conditions, and 

unmodeled periodicities can severely reduce their usefulness (Matalas 1997; Xu and Singh 2004; 

Vogel et al 1999). This condition of shifting historical parameters is called nonstationarity and 

poses a major challenge to planners seeking to address questions like how climate change might 

affect their systems and what levels of severe droughts and flooding might be experienced in the 

coming decades.  
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Nonstationarity on Maui and a Natural Experiment. This effort to model flows on 

engineered systems while accounting for the types of questions planners wish to answer—like 

how nonstationary parameters might affect the water system—benefits from a natural experiment 

that allows for model validation. Specifically, precipitation on Maui is nonstationary, having  

declined by approximately 15%  (Chu and Chen 2005) since the period of record for widely-used 

long-term average (1916-1983) precipitation figures (Giambelluca et al 1986). Coincidentally, 

long-term USGS historical flow records (1922-1987) for the Wailoa Ditch cover a period similar 

to that for the long-term precipitation averages, which means that synthetic flow models for 

Wailoa based on historical data are vulnerable to precipitation nonstationarity. Independent flow 

records reflecting modern conditions exist and can be used to validate modeling results 

attempting to correct for this nonstationarity, presenting an opportunity for a natural experiment 

testing whether synthetic flow models can be adequately adjusted for nonstationarity by 

integrating relationships from rainfall-runoff models with synthetic flow models.  

This natural experiment possible for Maui’s Wailoa Ditch is important largely because it 

enables validation of a technique—adjusting historical flow statistics based on different levels of 

a parameter like precipitation—that can then be used for scenario analysis useful for water 

availability and drought planning. That is, if a model adjusted to reflect current precipitation 

conditions produces accurate estimates of current flow conditions on the Wailoa Ditch, planners 

can feel more comfortable using the adjusted model to test many different scenarios for future 

precipitation to evaluate likely water availability and drought risk. Simulations of engineered 

system flows can be a direct link between common hydrologic parameters like rainfall and inputs 

to social and economic analyses that require information about water availability. This study thus 
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adds to the water management literature by addressing two main questions using Maui’s Wailoa 

Ditch as a case study: 

1) Can parameter relationships from rainfall-runoff models be used to compensate for 

nonstationarity in synthetic flow models? 

2) Can models designed for natural channels effectively be applied to an engineered 

system to directly assess water availability, including drought risk? 

In particular, this work joins the existing literature on rainfall-runoff modeling, synthetic flow 

modeling, nonstationarity, scenario analysis, and drought assessment, adding a perspective 

focused on an engineered system. 

 

METHODS 

This analysis demonstrates the usefulness of modeling water availability from engineered 

systems by generating scenario-based synthetic flows for those engineered systems directly, 

rather than by assessing flows in natural channels and making assumptions about their 

relationship to water availability. The analysis first validates the method using a natural 

experiment to confirm that rainfall nonstationarity can be addressed, then presents results of a 

drought risk assessment. Generation and analysis of scenarios linking rainfall to flows on the 

Wailoa Ditch uses four steps (Fig. 2): 

1) Select rainfall scenarios for analysis based on the literature; 

2) Apply rainfall-runoff relationships to scale historical flow data for scenario analysis; 

3) Use scaled historical flow to generate synthetic flows for chosen scenarios; 

4) Validate synthetic flows using independent data and assess major implications for 

water availability, primarily drought. 
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Step 1: Select future rainfall scenarios for analysis based on the literature 

This drought case study examines three levels of rainfall that Maui might observe in the 

future:  

a) A control scenario using historical 1916-1983 rainfall levels (“100%”) as published in 

the 1986 Rainfall Atlas of Hawai’i (Giambelluca et al 1986), which were used to develop the 

regression equation used here (Gingerich 2005);  

b) A validation scenario using estimated current rainfall levels, approximately 85% of the 

1986 historical values (“85%,” Chu and Chen 2005), as the basis of a natural experiment to be 

tested against measured modern flows; and  

c) An inquiry scenario using estimated future rainfall levels based on ensemble means 

and application of multiple linear regression to six IPCC AR4 climate models, forecasting a 5-

10% decline in winter (October – April) rainfall and a 5% increase in summer (May – 

September) rainfall versus present day values (Timm et al 2009; Elison Timm et al 2011). For 

this analysis, the more conservatively dry value of a 10% decline in winter rainfall is used. Since 

current rainfall is about 85% of historical values, anticipated rainfall under climate change is 

estimated at 77% of historical values for winter (90% of 85% of the 1916-1983 average) and 

89% of historical values for summer (105% of 85% of the 1916-1983 average) when both the 

recently observed decline in rainfall and the expected seasonal effects of climate change are 

taken into account. Further background and analysis of additional future rainfall scenarios using 

a wider range of rainfall-runoff response parameters can be found in Grubert (2011). 
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Step 2: Apply rainfall-runoff relationships from regression equations to scale historical ditch 

flow for scenario analysis 

Once rainfall scenarios are selected in step 1, the historical ditch flow record is scaled 

using the rainfall-runoff relationship implied by a regression equation that applies to the streams 

that feed the ditch, with an output (like median flow) that can be related to flows in the 

engineered channel. Regression equations link an output of interest, like streamflow, with easily 

measurable parameters, like basin size. Streamflow characteristics are often log-normally 

distributed (Oki et al 2010), and so streamflow regression equations frequently take the generic 

form 

𝑄 = 𝑘× 𝑋&
'()

&*+    (1), 

 

where Q represents flow, k is an empirical parameter, and Xi represent independent basin 

characteristics like area or elevation (Oki et al 2010). The exponent of each parameter indicates 

the sensitivity of median streamflow to that parameter. Larger exponents indicate higher 

sensitivity, with exponents greater than one indicating that flow will change proportionally faster 

than the parameter of interest. 

Ditch characteristics cannot themselves be used to parameterize a regression equation 

developed for natural channels, as ditches have fundamentally different channel shape, 

orientation, and water input profiles from Maui’s streams. Thus, in order to apply a rainfall-

runoff relationship from a regression equation calibrated with natural channels to flow in an 

engineered system, a link must be established between the streamflow predicted by the 

regression equation and the desired type of flow in the engineered channel. In some cases, 

engineered channels might be capacity constrained by channel size (capturing all water up to 
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some cumulative value), pipes (capturing all water from an individual stream up to some value), 

or other physical or operational constraints. For Wailoa, given a long-term record of mean flow 

in the engineered channel, it is necessary to find some relationship between mean ditch flow and 

one of the types of flows related to precipitation by a rainfall-runoff relationship. To establish 

this link, it is necessary to consider the physical relationship between the engineered channel and 

its inputs—here, the flow from many streams, not rainfall.  

Seven regression equations linking precipitation to streamflow are identified for Maui, 

with two focused on mean flows (total mean flows for leeward and windward streams, 

Yamanaga 1972 in Verdin and Worstell 2008); three focused on median flows (total flow, 

Fontaine et al  1992; total and base flow, Gingerich 2005); and two focused on low flows (95 

percent duration total and base flows, Gingerich 2005). Thus, if Wailoa Ditch flow can be related 

to mean, median, or low total or base flow for streams on Maui, a link enabling direct synthetic 

record generation for the ditch can be established.  

A similar exercise considering available validation data and available relationships can be 

carried out in other settings with different results, but in the case of the Wailoa Ditch, the closest 

relationship is between median streamflows for the perennial Northeast Maui streams that feed 

Wailoa (Gingerich 2005) and mean ditch flow (Qditch, mean). The reason that median streamflows 

behave like mean ditch flow is because stream diversion structures, effectively gaps in the 

streambed that redirect water to the ditch system, tend to capture all low and medium flows: 

100% of streamflow is captured roughly 70-80% of the time (Gingerich 2005). This capture is, 

on average, quite similar to median flows because of the flashiness of the streams, with very high 

infrequent flows that are not captured but tend to increase mean flow relative to median flow. 

The assumption that on average, annual median flows are diverted is supported by measurements 
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taken at several streams (Gingerich 2005). Thus, mean ditch flows are approximated as 

aggregated median streamflows (Qditch, mean ≅ ΣQstreams, median), which provides the link between 

ditch flow data and a regression equation necessary to carry out validation of the natural 

experiment described in this work.  

Details of the chosen regression equation, including original datasets, can be found in 

Gingerich 2005, summarized here. The equation (adapted here to SI units from the original, 

Gingerich 2005) estimates annual median streamflows in cubic meters per second for Northeast 

Maui streams given elongation ratio ER (a dimensionless measure of basin shape, where a higher 

ER represents a shorter, wider basin), maximum basin elevation Emax (meters), and annual mean 

rainfall RF (cubic meters per second, m3/s, for the stream’s drainage area):   

 

𝑄stream,	median	annual	total	flow = 27.48×𝐸𝑅DE.FGH×𝐸maxD+.JHH×𝑅𝐹+.JJL  (2). 

 

The regression equation provides the 50 percent flow duration of total flow (referred to as 

median flow henceforth) and is calibrated based on gaged daily-mean flow data adjusted to a 

1914-2003 base period and annual rainfall data for 21 streams and their basins adjusted to a 

1916-1983 base period (as published in Giambelluca et al 1986), converted to volume per second 

(Gingerich 2005). In both the flow and rainfall cases, adjustment to the base period required 

extrapolation of data due to limited records at some stations: complete records for the entire base 

period do not exist for all stations (Gingerich 2005). Applicable parameter ranges for Equation 2 

are found in Table 1 (Gingerich 2005). The equation is considered applicable over roughly an 

order of magnitude in rainfall rate, from 0.2 to 1.4 m3/s, which means it is valid for the range of 

rainfalls used for scaling in this work.  
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Scaling the historic ditch flow records by the rainfall-streamflow relationship that 

characterizes the ditch’s inputs produces alternative scenario historical records that preserve 

statistical relationships but reflect different rainfall conditions. This adjusted record is important 

because it enables derivation of statistical structures like inter-trial correlations used to generate 

synthetic flow series in the next step. The scaled historical flows are not themselves used for 

drought analysis, but rather as the basis for generating synthetic flow records that are. 

Scaling proceeds as follows. The relationship between streamflows and rainfall is isolated 

from the other regression equation parameters (e.g. basin size). That is, mean annual ditch flow 

can be related to mean annual rainfall by  

𝑄ditch,	mean ∝ 𝑅𝐹'  (3), 

 

where b is the exponent of rainfall in the regression equation – here, 1.338. Rainfall 

scenarios selected in step 1 are incorporated by noting that for future rainfall equal to x of current 

rainfall, the relationship is 

 

𝑄ditch,	mean ∝ 𝑥' =
QRSTUTVW

QR

'
  (4). 

 

The factor in equation (4) is then multiplied by each monthly datum in the historical 

USGS monthly mean Wailoa Ditch flow records to produce an adjusted historical record that 

incorporates the effect of different rainfall scenarios.  

 

Step 3: Use scaled historical flow to generate synthetic flows for chosen scenarios 
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Generating synthetic ditch flow sequences follows Fok and Miyasato (1976) in using a 

lag 1 Markov model, a time-varying stochastic model common in streamflow modeling (Fiering 

and Jackson 1971) for which the result of a trial depends only on the outcome of the trial directly 

preceding it. 

Here, synthetic monthly flow sequences are generated for the Wailoa Ditch with this lag 

1 Markov ditch flow model, which includes a random noise term, historical observed sample 

standard deviations, and a correlation coefficient that relates flows in one month to flows in the 

preceding month, based on historical or adjusted historical flow data. Let Qi,j be the flow in 

month j of year i. Qi,j is given as 

𝑄&,X = 𝑄X + 𝑏X 𝑄&,XD+ − 𝑄XD+ + 𝑡𝑠X(1 − 𝑟Xa)+/a (5), 

where t is a random variate selected from a continuous probability distribution; sj is the 

sample standard deviation of flows in month j; rj is the correlation coefficient linking flows in 

month j to flows in month j-1, defined as  

𝑟X =
de,fde,fghDidfdfgh

j
ekh

lflfgh iD+
   (6), 

where p is the number of years of record (Fiering and Jackson 1971). If an initializing flow 

datum is missing, the sums are multiplied by 𝑝/(𝑝 − 1), as only 𝑝 − 1 terms are present. The 

regression coefficient bj linking flows in month j to flows in month j-1 is defined as 

𝑏X = 𝑟X×
lf
lfgh

  (7). 

Here, the scaled historical flow data produced in step 2 are used to calculate the necessary 

coefficients for synthetic flow generation, summarized in Table 2. 

In this case, t is selected from N(0,1), the normal distribution with mean 0 and standard 

deviation 1, based on work by Fok and Miyasato (1976) extended by Grubert (2011) showing 
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that the normal distribution is an appropriate fit for this type of analysis on the Wailoa Ditch, 

with 11 of 12 months passing a chi square test at 95 percent confidence with seven degrees of 

freedom (detail can be found in Grubert 2011). Given these relationships, the scaled historical 

record (65 flow-years) from step 2 is then used to calculate monthly correlation coefficients 

according to Equations 5-7. As the highest reported resolution on mean flows is daily, monthly 

data are considered reliable. 

Records are initialized with the mean flow for the first month, January in this analysis. 

The first 60 modeled months of synthetic data are discarded to reduce the signal of the 

initializing value. While negative flows are not commonly generated, the simulation is manually 

screened for negative values to eliminate negative flows from analysis where necessary. For this 

assessment, 1,000 model years of synthetic data are generated, a level at which basic statistical 

parameters are stable and rare events are detectable at a rate acceptable for a model that 

considers current conditions and a climate scenario through 2100.  

 

Step 4: Validate synthetic flows using independent data and assess major implications for water 

availability, primarily drought 

Validation. After synthetic flows for Wailoa Ditch are generated, two main aspects of 

the approach are validated using data external to those used to develop model relationships: 

namely, the hypothesized link between streamflows and ditch flows and the assumption that 

synthetic records for precipitation scenario analysis can be accurately produced by scaling the 

historical flow record. The validation process is illustrated in Fig. 3.  

The first validation is a bottom-up approach that tests the assumption that mean ditch 

flows are approximately aggregated median streamflows (Qditch, mean ≅ ΣQstreams, median) by 
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individually estimating Qmedian for the 39 Northeast Maui streams that account for nearly all input 

to the EMI ditch system, then summing these flows for comparison to estimated QEMI, mean. The 

estimate is adjusted to reflect Wailoa’s typical share of system flow to give an estimate of Qditch, 

mean based on ΣQstreams, median. If the estimate is similar to measured flow values for Wailoa, the 

validation succeeds. 

 For this bottom-up validation, the regression equation is applied to each of the 39 input 

streams using drainage basin characteristics at the highest-elevation point of diversion, which is 

usually the Wailoa diversion at about 400 meters of elevation. The streams, their basin 

characteristics as derived from StreamStats, a United States database, and the latitude and 

longitude of the delineation point for each stream can be found in Grubert (2011). StreamStats 

uses a 10-meter USGS Digital Elevation Model (DEM) to define elevations (Rosa and Oki 2010) 

and 1916-1983 rainfall averages (Giambelluca et al 1986).  

Wailoa Ditch flow is estimated from measured EMI system flows based on data from 

USGS’ NWIS database indicating that, on average, Wailoa Ditch accounted for about 68 percent 

of EMI system flows between 1931 and 1985 (the years with the most complete system gage 

records), with a standard deviation of 4 percent. This analysis assumes that Wailoa continues to 

account for 68% of EMI flows, with more background and analysis in Grubert (2011). 

The second validation is a top-down test of the assumption that scaling the historical flow 

record using rainfall-runoff relationships enables the production of synthetic records that 

accurately replicate modern conditions by compensating for nonstationary precipitation. First, 

average synthetic flows from the control scenario are compared with historical records to ensure 

the model is working correctly. Average synthetic flows from the validation scenario (85%) are 

compared to measured flow data for EMI that are independent of the gage data underlying the 
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estimate—specifically, flow data collected and reported by HC&S (CWRM 2010) rather than 

USGS (Fig. 3). Wailoa Ditch flow is again estimated by assuming that Wailoa accounts for 68% 

of EMI flow. If average synthetic flows roughly match recorded flows, the validation succeeds. 

Drought assessment. Drought risk under lower rainfall futures is assessed by analyzing 

three flow-related parameters for each of three rainfall scenarios over 1,000 twelve-month 

periods of synthetic flow model data (Table 3). Extreme drought is defined as a month where 

mean Wailoa Ditch flow averages less than 0.9 m3/s, a condition reached only once during the 

ditch’s 65 year historical record (see Grubert 2011). This threshold is based on the system’s 

emergency level: if EMI flows fall below 0.9 m3/s (20 mgd in local units) flows are not adequate 

to simultaneously supply drinking water treatment plants at normal levels and provide adequate 

fire suppression water to a major local industrial facility (Hamilton 2008). Given Wailoa’s major 

contribution to EMI flows (>70% during drought periods), a month with less than 0.9 m3/s 

average flows on Wailoa is likely to contain periods of emergency on the EMI system generally. 

 

RESULTS 

Results are presented for validation of analytical decisions, then for drought analysis 

using synthetic flows for Wailoa Ditch generated via the validated procedure. 

Validation  

Bottom-up: Testing whether Qditch, mean ≅ ΣQstreams, median. Synthetic Qditch, mean for Wailoa 

Ditch under the control precipitation scenario (i.e., replicating historical conditions) is 4.8 m3/s 

(mean of 1,000 trials). For the 39 primary input streams, ΣQstreams, median = 4.7 m3/s, with historical 

measured Qditch, mean = 4.9 m3/s. Thus, the control estimate is about 2% lower than observed flow 
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and about 2% higher than ΣQstreams, median, so the assumption that Qditch, mean ≅ ΣQstreams, median is 

considered valid. 

Top-down: Testing whether rainfall scaling compensates for nonstationarity. 

Synthetic Qditch, mean for Wailoa Ditch flow under the validation precipitation scenario (i.e., 

replicating current conditions) is 4.0 m3/s (mean of 1,000 trials). HC&S flow measurements 

indicate annual measured QEMI, mean = 6.1 m3/s (139 mgd) between 2003 and 2009 (CWRM 2010), 

which corresponds to estimated annual Qditch, mean = 4.2 m3/s for the Wailoa Ditch. Thus, the 

natural experiment succeeds, generating estimates within 5% of observations. 

 

Drought assessment 

 For the control scenario using unscaled historical flow records, model results (sample 

size: 1,000 twelve-month trials) indicate a synthetic annual Qditch, mean = 4.8 m3/s, or 99% of 

historical flows. Extreme drought occurs in 74 of 12,000 months, for an incidence of 0.6%. 

Extreme droughts occur most frequently in September, for 24 out of 1,000 trials (2.4%) (Fig. 4). 

Annual synthetic Qditch, mean are above the measured historical median Qditch, mean in 48% of 

annualized trials, matching the expectation of 50% well. Monthly agreement is less good: for 

example, modeled January flows exceed historical median Qditch, January mean in 60% of trials (Fig. 

5). 

 For the validation scenario approximating current conditions, synthetic annual Qditch, mean 

= 4.0 m3/s, or 80% of historical flows. Extreme drought occurs in 107 of 12,000 months, for an 

incidence of 0.9%. Extreme droughts again occur most frequently in September, for 28 out of 

1,000 trials (2.8%). Annual synthetic Qditch, mean are above the measured historical median Qditch, 

mean in only 4% of annualized trials, and again, modeled January flows are relatively highest 



Final article available at: http://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0001468 

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 1 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

18 

compared to actual data, with 34% of January trials showing Qditch, mean above historical median 

Qditch, mean.  

 For the inquiry scenario approximating rainfall expected under anthropogenic climate 

change by 2100, assuming winter precipitation of 77% of 1916-1983 levels and summer 

precipitation of 89% of 1916-1983 levels, synthetic annual Qditch, mean = 3.8 m3/s, or 76% of 

historical flows. Extreme drought occurs in 129 of 12,000 months, for an incidence of 1.1%—

nearly twice the rate simulated using 1916-1983 conditions. Here, October sees the largest 

incidence of extreme droughts, with 25 out of 1,000 trials (2.5%) (September has a 2.3% 

incidence). Annual synthetic Qditch, mean are above the measured historical median Qditch, mean in 

only 2% of annualized trials, with relatively higher flows in the summer as expected. 

 

DISCUSSION 

Validation 

Validation indicates that the two major assumptions made in this work—Qditch, mean ≅

	ΣQstreams, median and that the historical record can be scaled using a rainfall-runoff relationship to 

reflect changed precipitation—are valid, with close agreement between simulated and actual 

flow statistics on an annual basis for both historical and current conditions. Assuming historical 

conditions, ΣQstreams, median is 4% lower than the long-term recorded annual Qditch, mean. Modeling 

mean ditch flow directly (assuming Qditch, mean = ΣQstreams, median) produces an even more accurate 

estimate, only 2% lower than the long-term recorded annual Qditch, mean. The small underestimation 

is expected, as inputs from very small streams and high flow events are excluded. Actual Qditch, 

mean would thus be expected to be slightly higher than the synthetic flows, confirmed by the data. 
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Notably for Maui, this validation further indicates that the EMI system essentially totally diverts 

annual median streamflows, as has previously been suggested (Gingerich 2005).  

This study also validates the use of rainfall-runoff equations to compensate for 

nonstationarity in synthetic flow modeling for the Wailoa Ditch, reproducing basic annual 

statistics to within 5% of measurements (CWRM 2010) by generating synthetic records based on 

precipitation-scaled historical records. While this case study only addresses Northeast Maui, the 

result is a promising indicator that, given an appropriate regression equation, parameter scaling 

can enable accurate scenario analysis using synthetic flow generation methods. Many regions of 

the United States have fairly up-to-date regression equations available for linking climate 

parameters and streamflows (Verdin and Worstell 2008), and the higher geographic similarities 

across larger areas in the continental United States (Vogel et al 1999) suggest that high 

regression equation resolution is likely less important for other locations.  

The model used here does not incorporate temperature effects, in part because model 

results indicate close agreement without the added complexity. Streamflows on Maui (and likely 

other volcanic islands) are likely to be less sensitive to temperature than other regions because 

Maui has almost no surface water storage, extremely flashy streams with low retention time, and 

no snowmelt input. A recent study on effects of climate change on streamflow on the Island of 

Hawaii also investigates links between streamflow and precipitation without incorporating a 

temperature parameter, noting a link between temperature and precipitation but not streamflow 

yield (Strauch et al 2015). Investigation of temperature effects on orographic rainfall at 

midlatitudes also shows this link (Siler and Roe 2014). Further, though Maui is getting warmer 

(Giambelluca et al 2008; Diaz et al 2014), temperatures at the elevations relevant to this study 

have been rising at less than half the global average rate (Fletcher 2010). Work in other basins 
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indicates that rising temperatures tend to reduce streamflow (Fu et al 2007), suggesting the 

results presented here might conservatively underpredict drought. Issues like incorporating 

evaporation from water bodies, particularly given a rising temperature trend, might be more 

important elsewhere (Fu et al 2007), particularly where regression equations include a 

temperature relationship as a major parameter affecting flow (e.g. Vogel et al 1999). 

 

Drought assessment 

An implication of the regression equation’s modeled relationship between rainfall and 

streamflow (Gingerich 2005, here translated to ditch flow) is that flows fall faster than rainfall: 

the exponent 1.338 implies that for every 1% fall in rainfall, flows will fall by 1.338%. This 

relationship is borne out in the modeled results for ditch flow response to rainfall: at 85% of 

rainfall, ditch flows are only 80% of their historical values, a 20% decline in flow for a 15% 

decline in rainfall as anticipated. The model behaves as expected and reflects the challenge that 

flows and thus water available for human use will fall faster than rainfall, in part because Maui’s 

ditch-feeding streams have very little bank storage and highly porous beds. 

The only recorded incidence of extreme drought as defined in this work occurred in 

October 1984, a 0.1% incidence in the 778 months of gage data between 1922 and 1987. The 

synthetic record generated assuming historical conditions suggests that extreme drought might be 

expected about six times as frequently over long periods of time, based on 1,000 model years of 

synthetic flows. This result could be a model artifact as the rainfall-runoff model does not 

capture the contributions of groundwater-derived base flows. Potential for some groundwater 

contribution likely means that the model overpredicts extreme drought, but it is worth noting that 
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groundwater pumping activity has increased significantly since 1987, reducing the amount of 

groundwater available for inflow. 

As expected, as rainfall declines, extreme droughts are expected to become more 

frequent, at about 0.9% under current rainfall conditions and 1.1% under conditions expected as 

a result of anthropogenic climate change (excluding the contributions of possibly threatened 

groundwater-derived base flows). Additional recent work on the effect of climate change on 

Maui’s rainfall suggests that conditions could be considerably drier (Elison Timm et al 2015), 

making extreme drought even more likely. Modeled extreme periods tend to be more evident 

during the late portion of Maui’s dry season (September – October) and the middle portion of 

Maui’s wet season (January – February) (Fig. 4). While drought conditions at the end of the dry 

season make intuitive sense, the driver of mid-wet season droughts are less obvious: possibly, the 

fact that Maui’s rainfall tends to come in a few large winter storms that might overtop diversions, 

resulting in the loss of floodwaters, is driving these conditions. 

Overall, declining rainfall means less water is available for use from the Wailoa Ditch. 

Fig. 5 shows that the two low rainfall condition scenarios produce below-median mean flows in 

every month of the year: in fact, only 2-4% of years would be expected to reach median annual 

mean flows. The shape of the synthetic record based on historical conditions suggests that the 

model might be overpredicting flows in January-February, June, and September-October (Fig. 

5); an alternative interpretation is that the small sample size that is the 65 year historic record has 

some characteristics that would not be observed over the long term.  

 

Limitations 
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Regression equations are empirical and highly specific to the conditions under which they 

are developed: thus, the most fundamental limitation of using regression equations for scenario 

analysis is the assumption that the underlying drivers of an empirical relationship do not change 

with the scenarios. One illustration of this problem is that the relationship between rainfall and 

streamflow (and thus, by extension, ditch flow) might change in response to climate change or 

other external factors like altered land use.  

A specific example of how this relationship might not be independent of rainfall 

conditions is the situation where low rainfall leads to a higher contribution to streamflow by 

groundwater inputs. If rainfall declines, groundwater input (base flow) tends to become a larger 

relative contributor to total flow: if total streamflow is lower because of decreased rainfall but 

the groundwater contribution remains the same, the reduced total flow will be more dependent 

on groundwater. Thus, increasing rainfall by one percent might create a relatively smaller change 

to total streamflow than when more of the streamflow was due to rainfall, effectively decreasing 

the elasticity. Alternatively, if land use change causes more rainfall to become surface runoff 

rather than groundwater recharge, as might happen after deforestation (Idol 2003), rainfall would 

become a more significant contributor to total streamflow, and the elasticity would increase: 

more streamflow would result from the same increase in rainfall. Sensitivity testing using more 

rainfall scenarios and more regression equation relationships, including one developed for 

dryland streams, can be found in Grubert (2011). 

 Additionally, this analysis does not consider the potential effects of increased flow 

variability, which could be particularly relevant for drought assessment. However, evidence 

suggests that rainfall variability and streamflow variability might be declining or holding 
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relatively stable for Hawaii and are not likely to be statistically significantly affected by climate 

change (Wetherald 2010; Elison Timm et al 2011).  

 

CONCLUSIONS 

This analysis of Wailoa Ditch flows on Maui, Hawaii integrates several well known 

tools to analyze surface water availability in engineered systems: regression equations 

characterizing parameter-runoff relationships; scenario analysis of potential future conditions to 

characterize ranges of outcomes and encourage resilient planning; and drought assessment with 

synthetic flow records, using observed parameters to simulate a large amount of statistically 

consistent data for analysis. In particular, this work demonstrates that when the relationship 

between natural and engineered channel flow is understood, generating synthetic flows for 

scenario analysis for engineered systems directly can produce accurate representations of reality.  

While the particulars of this case study are not widely generalizable beyond volcanic 

islands with similar engineered channels, the broader insights are: focusing on engineered 

systems as targets for probabilistic assessment of water availability, drought risk, and other 

characteristics relevant to water management is useful, and using regression model relationships 

as the basis for scenarios testing nonstationarity in important parameters improves the value of 

synthetic flow modeling. Focusing directly on engineered systems can enable more accurate 

replication of real conditions on the systems most relevant to human use, as seen in the Wailoa 

example where a direct ditch flow estimate better reproduces measured flows than a more typical 

bottom-up estimate of streamflows that feed the ditch. The Wailoa Ditch presents a valuable 

opportunity to test direct generation of synthetic flows on engineered systems under different 

precipitation conditions because the system is large, isolated, and well characterized, with high 
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quality data, a useful natural experiment that enables validation, and salience for socioeconomic 

decisions on Maui.  

Accurately anticipating future surface water supplies has major implications for Maui and 

many other regions, including determination of agricultural viability, choices and investment in 

energy supply, and allocation of investment to various types of water infrastructure. Linking 

commonly-forecasted rainfall data to engineered system flows, which are an important indicator 

of water availability, is a useful way to link complex meteorological models to the water flow 

data that have the most actionable relevance for public and private decision makers. Further, 

focusing on engineered system flows helps to separate questions about immediate concerns like 

how much water is available given current conditions from longer-term questions about issues 

like how water is abstracted, diverted, and allocated. This Wailoa Ditch case study demonstrates 

that combining regression analysis, scenario analysis, and synthetic flow models to engineered 

systems can produce useful information for water planners by directly modeling the amount of 

water available to manage. Water managers like those on Maui already monitor and use data 

about flows on engineered systems because it is valuable. Being able to expand this information 

through direct modeling, which can be used in tandem with models of natural systems, grants 

flexibility and enables more direct communication about the biggest water management lever 

many planners have: the amount of water available and ready for allocation from engineered 

systems. 
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FIGURES 
 
Fig. 1. This map shows Maui’s natural (gray) and engineered (black) waterways, with Wailoa 
Ditch and other major East Maui Irrigation (EMI) ditches labeled.
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Fig. 2. Synthetic flows for the Wailoa Ditch are generated for three precipitation scenarios using 
historical gage and precipitation data with scaled precipitation, then validated using modern flow 
records.
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Fig. 3. Modeled values for Wailoa Ditch flows are validated both bottom-up (by modeling inputs 
by 39 streams) and top-down (by comparing with independently measured flow data). 
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Fig. 4. Lower rainfall leads to increased risk of extreme drought. Highest modeled drought risks 
occur in the late part of the dry season and during the middle of winter, when storm flows might 
not be able to be captured with existing infrastructure. 
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Fig. 5. Lower rainfall leads to lower ditch flow. As rainfall drops, the proportion of years where 
mean flow is above the historical median mean value approaches 0.  

 

 

  

Jan$ Feb$ Mar$ Apr$ May$ Jun$ Jul$ Aug$ Sep$ Oct$ Nov$ Dec$
Ann8
ual$

Actual$record$(192281987),$778$months$ 50%$ 50%$ 50%$ 50%$ 50%$ 50%$ 50%$ 50%$ 50%$ 50%$ 50%$ 50%$ 50%$

SyntheHc:$100%$historical$rainfall,$12,000$
months$

60%$ 52%$ 45%$ 42%$ 51%$ 53%$ 47%$ 46%$ 55%$ 55%$ 43%$ 48%$ 48%$

SyntheHc:$85%$historical$rainfall,$12,000$
months$

34%$ 26%$ 17%$ 9%$ 16%$ 29%$ 15%$ 18%$ 32%$ 31%$ 15%$ 17%$ 4%$

SyntheHc:$77%$winter$historical$rainfall$/$
89%$summer$historical$rainfall,$12,000$

months$
17%$ 12%$ 4%$ 1%$ 25%$ 38%$ 25%$ 26%$ 39%$ 16%$ 6%$ 7%$ 2%$

0%$

10%$

20%$

30%$

40%$

50%$

60%$

70%$

80%$

90%$

100%$

Pe
rc
en

ta
ge
)o
f)t
ria

ls
)w
ith

)m
ea
n)
flo

w
s))

ab
ov
e)
m
ed

ia
n)
re
co
de

d)
m
ea
n)
)fl
ow

)v
al
ue

s)

Occurrence$of$Mean$Flows$Above$Historical$Recorded$Median$
Mean$Flow$on$the$Wailoa$Ditch,$Maui$in$the$Historical$Record$and$

in$Three$Rainfall8Adjusted$SyntheHc$Records$



Final article available at: http://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0001468 

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 1 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

33 

TABLES 

Table 1: Parameter ranges for Gingerich equation for median streamflow, Northeast Maui 

Parameter Range Mean 
RF (rainfall, cubic meters/second) 0.19 – 1.4 0.79 
Emax (maximum basin elevation, meters) 760 – 2,800 2,000 
ER (elongation ratio, dimensionless) 0.17 – 0.34 0.26 

Note: Converted to SI units (two significant figures) from the original in Gingerich 2005. The 
equation is considered valid for a wide range of rainfall values, which makes it valuable for 
rainfall scenario analysis. 
 
 
Table 2: Lag 1 Markov model coefficients used to generate synthetic flows on the Wailoa Ditch 
 

Coefficient Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Qavg, j 4.4 4.1 5.4 5.8 5.6 4.6 5.7 5.3 3.9 3.9 4.9 4.7 
sj 1.4 1.4 1.6 1.3 1.4 1.6 1.5 1.5 1.6 1.5 1.5 1.3 
rj 0.42 0.68 0.05 0.35 0.42 0.65 0.58 0.55 0.72 0.60 0.46 0.59 
bj 0.45 0.65 0.06 0.30 0.45 0.73 0.56 0.55 0.75 0.57 0.45 0.54 

Note: Mean monthly flow Qj and monthly standard deviation sj are given in m3/s;, correlation 
coefficient rj and regression coefficient bj are dimensionless. 
 
 
Table 3: Rainfall scenarios and flow-related parameters used to assess drought risk on the 
Wailoa Ditch 
 

Rainfall Scenarios Flow-related parameters 
Control (100% of historical) Mean flow 
Validation (85% of historical) Frequency of extreme drought 
Inquiry (Seasonal, with climate change) Frequency of flows below historical median 

Note: Rainfall scenarios are described in Step 1 of the Methods section. 


